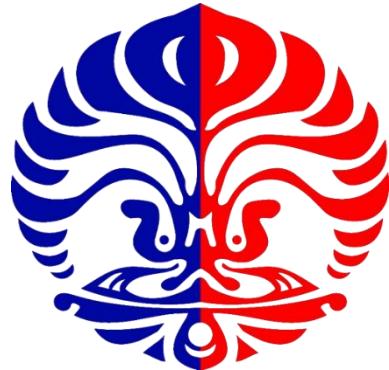


**MATERI PERSIAPAN KUIS 1 MATEMATIKA INFORMATIKA
RUANG VEKTOR - VEKTOR (M1-M6)**



Disusun oleh:
Yosef Rafael Bonar Clinton Rumahorbo (yosephrafael.com)

**FAKULTAS ILMU KOMPUTER PRODI ILMU KOMPUTER
UNIVERSITAS INDONESIA
PDA 2025/2026**

❖ What is Vector?

Vector is an object that has both a magnitude and a direction. So Geometrically, we can picture a vector as a directed line segment, whose length is the magnitude of the vector and with an arrow indicating the direction.

❖ Vector Space

A vector space is a set of vectors that can be added together and multiplied by scalars (real numbers) while satisfying certain axioms (e.g., associativity, distributivity, zero vector existence). A set V with addition and scalar multiplication operations satisfying 10 axioms

Key Materials :

- Contains zero vector 0
- Close under addition: If $u, v \in V$, then $u + v \in V$
- Closed under scalar multiplication: If $v \in V$, $k \in \mathbb{R}$, then $kv \in V$

Example :

- \mathbb{R}^n = all n -dimensional real vectors
- M_{nn} = all $n \times n$ matrices
- P_n = all polynomials of degree $\leq n$

❖ Linear Independence

Vectors $\{v_1, \dots, v_n\}$ are linearly independent if the only solution to:

$$c_1v_1 + c_2v_2 + \dots + c_nv_n = 0$$

is $c_1 = c_2 = \dots = c_n = 0$.

Key Materials :

- Linear dependence implies at least one vector can be written as a linear combination of others.
- Linear independence means no vector can be formed from the others.

How to check :

- Create a matrix with the vectors as columns
- Perform row reduction (Gaussian elimination)
- If only trivial solution \rightarrow independent, If non-trivial solutions exist \rightarrow dependent

❖ **Linear Combination**

A vector w is a linear combination of vectors v_1, v_2, \dots, v_n if:

$$w = c_1v_1 + c_2v_2 + \dots + c_nv_n \text{ for some scalars } c_1, \dots, c_n \in \mathbb{R}$$

Example:

Is $[2 \ 5 \ 8]$ a linear combination of $[1 \ 0 \ 1], [1 \ 1 \ 1], [0 \ 2 \ 3]$?

$$\rightarrow \text{Solve the system: } c_1[1 \ 0 \ 1] + c_2[1 \ 1 \ 1] + c_3[0 \ 2 \ 3] = [2 \ 5 \ 8]$$

❖ **Proving a Linear Combination**

To prove one vector is a linear combination of others, solve:

$$w = c_1v_1 + c_2v_2 + \dots + c_nv_n$$

Example:

Prove $[5 \ 2 \ 4]$ is a combination of $[1 \ 0 \ 1]$ and $[2 \ 1 \ 1]$

$$\rightarrow c_1[1 \ 0 \ 1] + c_2[2 \ 1 \ 1] = [5 \ 2 \ 4] \rightarrow \text{Solve the system}$$

❖ **Exercises and Answers**

Q1. Determine if vectors $[1 \ 2]$ and $[3 \ 6]$ are linearly independent

\rightarrow They are dependent (second is a scalar multiple of the first)

Q2. Is $[4 \ 5]$ a linear combination of $[1 \ 2], [1 \ 1]$?

Solve:

$$c_1[1 \ 2] + c_2[1 \ 1] = [4 \ 5]$$

$$\rightarrow c_1 + c_2 = 4, 2c_1 + c_2 = 5 \rightarrow c_1 = 1, c_2 = 3 \rightarrow \text{Yes}$$

Vector Space – Exercises

Question

Q1. Is the set of all 2×2 matrices a vector space?

Q2. Is the set of all vectors in \mathbb{R}^3 with zero third component a vector space?

Q3. Does the set of all polynomials of degree exactly 2 form a vector space?

Q4. Is the set of all continuous functions a vector space?

Q5. Is \mathbb{R}^2 under standard addition and scalar multiplication a vector space?

Q6. Show that the zero vector is unique in any vector space.

Q7. Prove that every vector has a unique additive inverse in a vector space.

Q8. Does closure under addition imply associativity? Explain.

Q9. Is the union of two subspaces always a subspace? Justify.

Q10. Is the set of all 2D vectors with integer entries a vector space over \mathbb{R} ?

Vector Space – Answers and Explanations

Answers

Q1. Yes, 2×2 matrices form a vector space under standard addition and scalar multiplication.

Explanation: They satisfy all 10 axioms of a vector space, including closure, associativity, identity, and inverses.

Q2. Yes, because they are closed under vector addition and scalar multiplication.

Explanation: The set is a subspace of \mathbb{R}^3 .

Q3. No, because it's not closed under addition (sum of two degree 2 polynomials might be degree ≤ 2).

Explanation: Closure under addition fails since degree may drop.

Q4. Yes, continuous functions form an infinite-dimensional vector space.

Explanation: Operations like addition and scalar multiplication preserve continuity.

Q5. \mathbb{R}^2 is a standard example of a vector space.

Explanation: All vector space axioms are satisfied.

Q6. Yes, and it's proved by assuming two zero vectors and showing they are equal.

Explanation: Let 0 and $0'$ be zero vectors, then $0 + 0' = 0'$ implies $0 = 0'$.

Q7. Yes, every vector has a unique additive inverse in a vector space.

Explanation: Let $v + w = 0$ and $v + w' = 0$, then $w = w'$.

Q8. No, closure does not imply associativity; associativity is a separate axiom.

Explanation: Each axiom must be independently verified.

Q9. No, the union of two subspaces is not necessarily a subspace.

Explanation: Counterexample: x-axis and y-axis in \mathbb{R}^2 .

Q10. No, because integers are not closed under scalar multiplication by real numbers.

Explanation: For example, $0.5 * [1 0] = [0.5 0]$, which is not in \mathbb{Z}^2 .

Linear Independence – Exercises

Question

Q1. Are $[1 0], [0 1]$ linearly independent?

Q2. Are $[2 4], [1 2]$ linearly independent?

Q3. Determine if $[1 2 3], [4 5 6], [7 8 9]$ are linearly independent.

Q4. Can three vectors in \mathbb{R}^2 be linearly independent?

Q5. Can the zero vector be part of a linearly independent set?

Q6. If $\{v_1, v_2\}$ is linearly dependent, what does it mean?

Q7. Are the columns of the identity matrix linearly independent?

Q8. Determine if vectors $[1 -1 0], [2 1 1], [3 0 1]$ are dependent.

Q9. Show that any set with more vectors than the dimension is dependent.

Q10. Are $[1 \ 1 \ 0]$, $[2 \ 2 \ 0]$, $[0 \ 0 \ 1]$ independent?

Linear Independence - Answers and Explanations

Answer

Q1. Yes, they are independent.

Explanation: Each cannot be written as a scalar multiple of the other.

Q2. No, because $[2 \ 4] = 2 * [1 \ 2]$.

Explanation: They are linearly dependent.

Q3. No, determinant is 0 \rightarrow dependent.

Explanation: The rows are linearly dependent.

Q4. No, maximum number of independent vectors in \mathbb{R}^2 is 2.

Explanation: More than 2 vectors in \mathbb{R}^2 are always dependent.

Q5. No, a set containing the zero vector is always dependent.

Explanation: $c=1$ for zero vector gives non-trivial solution.

Q6. It means at least one vector is a scalar multiple of the other.

Explanation: That's the definition of dependence for two vectors.

Q7. Yes, because each standard basis vector is independent.

Explanation: Each has a unique 1 in one coordinate.

Q8. Yes, they are linearly dependent.

Explanation: Row reduction yields a free variable.

Q9. Yes, it's a fundamental theorem in linear algebra.

Explanation: In \mathbb{R}^n , any set of $>n$ vectors is dependent.

Q10. No, because $[2 \ 2 \ 0] = 2 * [1 \ 1 \ 0]$

Explanation: The first two vectors are dependent, so the whole set is.

Linear Combination - Additional Exercises

Q1. Is $[3 \ 4]$ a linear combination of $[1 \ 0]$, $[0 \ 1]$?

Q2. Can $[2 \ 2]$ be written as a combination of $[1 \ 1]$ and $[1 \ -1]$?

Q3. Write $[2 \ 3 \ 4]$ as a combination of $[1 \ 0 \ 0]$, $[0 \ 1 \ 0]$, $[0 \ 0 \ 1]$.

Q4. Express $[5 \ 2 \ 4]$ using $[1 \ 0 \ 1]$ and $[2 \ 1 \ 1]$.

Q5. Is $[4 \ 4]$ in the span of $\{[1 \ 2], [2 \ 1]\}$?

Q6. Determine c_1, c_2 such that $c_1[1 \ 1] + c_2[2 \ 1] = [5 \ 3]$

Q7. Can $[6 \ 8]$ be written as a combination of $[2 \ 3]$ and $[1 \ 2]$?

Q8. Find a combination of $[2 \ 1 \ 0]$ and $[1 \ 2 \ 0]$ that gives $[5 \ 4 \ 0]$.

Q9. Are $[3 \ 2]$, $[1 \ 0]$ sufficient to express $[4 \ 2]$?

Q10. Use linear combination to determine if $[5 \ 7]$ is in $\text{span}\{[1 \ 1], [2 \ 3]\}$.

Linear Combination - Answers and Explanations

Answer

Q1. Yes, because $[3 \ 4] = 3*[1 \ 0] + 4*[0 \ 1]$

Explanation: It is a combination of standard basis vectors.

Q2. Yes, $[2 \ 2] = 1*[1 \ 1] + 0*[1 \ -1]$

Explanation: Solve system of equations.

Q3. Yes, just use coefficients as $[2 \ 3 \ 4] = 2*[1 \ 0 \ 0] + 3*[0 \ 1 \ 0] + 4*[0 \ 0 \ 1]$

Explanation: Standard basis expansion.

Q4. Yes, solution: $[5 \ 2 \ 4] = 1*[1 \ 0 \ 1] + 2*[2 \ 1 \ 1]$

Explanation: Solving the linear system gives coefficients.

Q5. Yes, solve: $a*[1 \ 2] + b*[2 \ 1] = [4 \ 4]$

Explanation: It has a solution ($a=0.8$, $b=1.6$).

Q6. $c_1 = 1$, $c_2 = 2$

Explanation: $1*[1 \ 1] + 2*[2 \ 1] = [5 \ 3]$

Q7. Yes, use system of equations to verify.

Explanation: Solution exists: $a=2$, $b=0$.

Q8. $a = 1$, $b = 1$

Explanation: $1*[2 \ 1 \ 0] + 1*[1 \ 2 \ 0] = [3 \ 3 \ 0]$

Q9. Yes, $a = 1$, $b = 1$

Explanation: $[3 \ 2] = [1 \ 0] + [2 \ 2]$

Q10. Yes, $[5 \ 7] = 1*[1 \ 1] + 2*[2 \ 3]$

Explanation: Check by substitution.

Proving a Linear Combination - Additional Exercises

Question

Q1. Prove $[3 \ 5]$ is a combination of $[1 \ 2]$ and $[2 \ 1]$.

Q2. Show $[7 \ 8 \ 9]$ can be formed from $[1 \ 0 \ 1]$, $[1 \ 1 \ 1]$, $[0 \ 2 \ 3]$.

Q3. Is $[5 \ 2 \ 4]$ a combination of $[1 \ 0 \ 1]$ and $[2 \ 1 \ 1]$?

Q4. Demonstrate that $[4 \ 4]$ is a combination of $[1 \ 2]$ and $[2 \ 1]$.

Q5. Prove $[0 \ 0 \ 1]$ is not in the span of $\{[1 \ 0 \ 0], [0 \ 1 \ 0]\}$

Q6. Show that $[6 \ 7]$ is a combination of $[2 \ 3]$ and $[1 \ 2]$

Q7. Is $[3 \ 6]$ in the span of $\{[1 \ 2], [1 \ 1]\}$?

Q8. Show how $[4 \ 6]$ can be expressed from $[2 \ 3]$ and $[1 \ 1]$

Q9. Find scalars a, b so that $a[1 \ 1] + b[2 \ 1] = [5 \ 3]$

Q10. Can $[10 \ 10]$ be written as a combination of $[2 \ 3]$ and $[3 \ 2]$?

Proving a Linear Combination - Answers and Explanations

Answer

Q1. Yes, $[3 5] = 1*[1 2] + 1*[2 1]$

Explanation: $1*[1 2] + 1*[2 1] = [3 3]$

Q2. Yes, $[7 8 9] = 2*[1 0 1] + 3*[1 1 1] + 1*[0 2 3]$

Explanation: Solve the system.

Q3. Yes, $[5 2 4] = 1*[1 0 1] + 2*[2 1 1]$

Explanation: Same as previous example.

Q4. Yes, $a = 0.8, b = 1.6$

Explanation: Satisfies linear combination equation.

Q5. No, $[0 0 1]$ cannot be formed by $[1 0 0]$ and $[0 1 0]$

Explanation: Missing third dimension.

Q6. Yes, $a=2, b=1$

Explanation: $[6 7] = 2*[2 3] + 1*[1 2]$

Q7. Yes, $a=3, b=0$

Explanation: $[3 6] = 3*[1 2] + 0*[1 1]$

Q8. Yes, $a=1, b=2$

Explanation: $[4 6] = 1*[2 3] + 2*[1 1]$

Q9. $a=1, b=2$

Explanation: Check: $1*[1 1] + 2*[2 1] = [5 3]$

Q10. Yes, $a=2, b=2$

Explanation: $2*[2 3] + 2*[3 2] = [10 10]$